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Holographic fermions at tree-level
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Landau Fermi liquids
Non-Fermi liquids

Fermions at finite density

I Landau Fermi liquid theory
[Landau, 1957] [Abrikosov-Khalatnikov, 1963]

stable RG fixed point [Polchinski, Shankar]

(modulo BCS instability) [Benfatto-Gallivotti]

I (i) ∃ Fermi surface
(ii) (weakly) interacting quasiparticles

⇒ thermodynamics / transport

I appear as poles in the Green’s function

GR(t, ~x) = iθ(t) · 〈{ψ†(t, ~x), ψ(0,~0)}〉µ,T
GR(ω,~k) = Z

ω−vF k⊥−Σ
+ . . . , Σ ∼ iω2

?

ρ(ω,~k) ≡ ImGR(ω,~k)
k⊥→0−→ Zδ(ω − vFk⊥)
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Landau Fermi liquids
Non-Fermi liquids

Non-Fermi liquids do exist

I sharp Fermi surface still present X

I no long-lived quasiparticles ×
pole residue can vanish

I anomalous thermodynamic and transport properties

Examples

I 1+1d Luttinger liquid: interacting fermions → free bosons

I FL → FL’ quantum phase transitions

I metal-insulator transition

I heavy fermion compounds

I high-temperature superconductors
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Landau Fermi liquids
Non-Fermi liquids

High-Tc superconductors: marginal Fermi liquid

generic phase diagram for hole-doped cuprates

pseudogap, Fermi arcs, density waves

strange metal: ρ ∼ const. + αT

proposal: marginal Fermi liquid
[Varma et al., 1989]

GR(k , ω) = Z
ω−(εk−µ)+ω log ωc

ω
+iω
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Landau Fermi liquids
Non-Fermi liquids

Fermion-boson system in 2+1 dimensions

[Sung-Sik Lee, Metlitski-Sachdev, Mross-McGreevy-Liu-Senthil]

L =
∑

j ψ
∗
j (∂τ − ivx∂x − vy∂

2
y )ψj + e√

N

∑
j ϕψ

∗
j ψj + ϕ(−∂2

y )ϕ

ω → λz kx → λ2kx ky → λky

e flows to strong coupling under z = 2 scaling

one-loop self-energies generated

G = 1
kx+k2

y−
ic sgnω

N
|ω|2/3

D = 1

k2
y + |ω||ky |

scaling symmetry is z = 3 large-N limit is ill-defined
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Charged black hole in AdS4
Near-horizon AdS2
Fermi surfaces

Gauge / gavity duality

[Maldacena, 1997] [Gubser-Klebanov-Polyakov] [Witten]

d-dimensional ⇐⇒ string theory in (d+1)-dim.
conformal field theory anti-de Sitter spacetime

conformal symmetries ⇐⇒ AdS isometries
global symmetries ⇐⇒ gauge symmetries

large N limit, strong coupling ⇐⇒ classical gravity
finite temperature ⇐⇒ black hole in AdS

finite chemical potential ⇐⇒ electrically charged black hole
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Charged black hole in AdS4

Relativistic CFT3 with gravity dual and conserved U(1) global symmetry

S =
1

2κ2

∫
d4x
√
−g

(
R+

6

R2
− 1

4
FµνFµν + . . .

)
Charged black hole solution

ds2 = r2

R2

(
−f (r)dt2 + d~x2

)
+ R2 dr2

f (r)r2

f (r) = 1 + Q2

r4 − M
r3 A = µ

(
1− r0

r

)
dt

µ: chemical potential, horizon at r = r0.
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Charged black hole in AdS4
Near-horizon AdS2
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Low-energy physics

I Emergent “IR CFT”
AdS2 ⇔ “(0+1)-d CFT”

I At low frequencies parent theory
is controlled by IR CFT

I Conformal dimensions in IR

δ~k = 1
2 + ν~k ν~k = 1√

6

√
3
2 + m2R2 + k2

µ2
∗
− q2

2

Gk(ω) = ck(−iω)2νk (“semi-local quantum liquid”)

I interesting physics when
(i) normalizable modes at finite momentum
(ii) complex IR dimensions
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Holographic fermions at tree-level
Holographic fermions at one-loop

Charged black hole in AdS4
Near-horizon AdS2
Fermi surfaces

Fermionic normalizable mode: Fermi surface

Introduce ψ spinor field in the AdS − BH background

Sprobe =

∫
d4x
√
−g
(
ψ̄(/D −m)ψ + interactions

)
with Dµ = ∂µ + 1

4
ωabµΓab − iqAµ.

Two-point functions depend on (q,∆) ∆ = 3
2
±mR

Prescription [Henningson-Sfetsos] [Mück-Viswanathan] [Son-Starinets] [Iqbal-Liu]

I Solve the Dirac equation for the bulk spinor in AdS − BH

I Impose infalling boundary conditions at the horizon

I Expand the solution at the boundary

ψ = (−gg rr )−1/4e−iωt+ikxΨ Φα = 1
2
(1− (−1)αΓrΓtΓx)Ψ

Φα
r→∞
≈ aαr

m

(
0

1

)
+ bαr

−m

(
1

0

)
Gα(ω, k) =

bα
aα

α = 1, 2
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Fermi surfaces
At q = 1,∆ = 3/2 the numerical computation gives [Liu-McGreevy-DV] [Zaanen et al.]

∆ = 3/2, q = 1.0, 1.56 and 2.0
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Fermi surfaces: singular and non-singular

ν~k = 1√
6

√
m2R2 + k2

µ2
∗
− q2

2

Suppose νk <
1
2

GR(k, ω) = Z

k⊥−c(kF )ω2νk

ω?(k) ∼ kz
⊥ z = 1

2νkF
> 1 Γ(k)

ω?(k)
= const

Suppose νk >
1
2

GR(k, ω) = Z

k⊥− ω
vF
−c(kF )ω

2νkF

ω?(k) ∼ vFk⊥
Γ(k)
ω?(k)

= k
2νkF
−1

⊥ → 0

Suppose νk = 1
2

vF goes to zero, c(kF ) has a pole

GR(k , ω) = Z
k⊥+c1ω+c̃2ω logω+ic2ω

marginal Fermi liquid!
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Introduction
Holographic fermions at tree-level
Holographic fermions at one-loop

Charged black hole in AdS4
Near-horizon AdS2
Fermi surfaces

Bosonic normalizable mode: instability or QCP

instability at finite kB momentum

kB can be tuned to kB = 0 using a double-trace deformation
This gives the “hybridized” QCP [Faulkner-Horowitz-Roberts] [Iqbal-Liu-Mezei]

χ(ω, k) =
Z

g − gc + k2 + ω2 + c(k)ω2ν
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Holographic fermions at tree-level
Holographic fermions at one-loop

Charged black hole in AdS4
Near-horizon AdS2
Fermi surfaces

Complex IR dimensions: fermion

δ~k = 1
2 + ν~k ν~k = 1√

6

√
m2R2 + k2

µ2
∗
− q2

2

Gk(ω) = ck(−iω)2νk log-periodic

complex ν~k ⇔ pair-production

[Hartnoll et al.] [Liu et al.] [Zaanen et al.]

heavy fermions, many Fermi surfaces
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Holographic fermions at tree-level
Holographic fermions at one-loop

Charged black hole in AdS4
Near-horizon AdS2
Fermi surfaces

Complex IR dimensions: neutral boson

magnetic instability [Faulkner-Horowitz-Roberts] [Iqbal-Liu-Mezei-Si]

AdS2 → AdS ′2 with smaller radius

Tune to “marginal” QCP:

χ(ω,T ) = −ψ0

(
1
2
− iω

2πT

)
Imχ(ω,T ) = π

2
tanh ω

2T

(Varma’s boson spectrum)
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Fermionic self-energy

bulk-to-bulk propagator satisfies: ∇2
r1D(r1, r2;ω, k) = 1√

−g
δ(r1 − r2)

Dret.(r1, r2;ω, k) =
1

W
ϕnorm.(r>;ω, k)ϕingoing (r<;ω, k)

Generically, one cannot sum up the series.
However, on the Fermi surface, the propagator factorizes!

ϕingoing(r ;ω, k) = ϕnon−norm.(r ;ω, k) + G(ω, k)ϕnorm.(r ;ω, k)

Dret.(r1, r2;ω, kF + k⊥) ≈ G(ω, k)

W
ϕnorm.(r1;ω, kF )ϕnorm.(r2;ω, kF )

Thus, one gets a geometric series which can be summed up just like in QFT.
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Charge transport

I Normal phase of optimally doped high-Tc : ρ = (σDC )−1 ∼ T

I impurities: ρ ∼ const.

e-e scattering: ρ ∼ T 2

e-phonon scattering: ρ ∼ T 5

I Compute conductivity contribution of the holographic Fermi surfaces
[Faulkner-Iqbal-Liu-McGreevy-DV]
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Charge transport

I σDC ∼ α(m, q)T−2ν ; ν = 1√
6

√
m2 + k2

F −
q2

2

I Marginal Fermi liquid: ν = 1
2
⇒ σDC ∼ 1

T
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Summary

I AdS2 physics at intermediate energies

I black hole hair

I fermion: non-Fermi liquid
I boson: hybridized QCP

I complex dimensions in “IR CFT”

I fermion: heavy fermions, multiple Fermi surfaces
I boson: bifurcating QCP, AFM, superconductivity

I conductivity from bulk fermion loop

I spatially modulated phases [Nakamura-Ooguri-Park] [Donos-Gauntlett]

I (superconducting) Fermi arc [DV] [Benini-Herzog-Yarom]

I low-energy physics at finite N?

I mechanism for unconventional pairing?

I top-down approach: no Fermi surface in operator dual to gravitino
[Belliard-Gubser-Yarom] [Gauntlett-Sonner-Waldram]
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